A type theory which is complete for Kreisel's modified realizability
نویسنده
چکیده
We define a type theory with a strong elimination rule for existential quantification. As in Martin-Löf’s type theory, the “axiom of choice” is thus derivable. Proofs are also annotated by realizers which are simply typed λ-terms. A new rule called “type extraction” which extract the type of a realizer allows us to derive the so-called “independance of premisses” schema. Consequently, any formula which is realizable in HA, according to Kreisel’s modified realizability, is derivable in this type theory.
منابع مشابه
Proving Properties of Typed Lambda-Terms Using Realizability, Covers, and Sheaves (Preliminary Version)
We present a general method for proving properties of typed λ-terms. This method is obtained by introducing a semantic notion of realizability which uses the notion of a cover algebra (as in abstract sheaf theory). For this, we introduce a new class of semantic structures equipped with preorders, called pre-applicative structures. These structures need not be extensional. In this framework, a g...
متن کاملModified Realizability Toposes and Strong Normalization Proofs
This paper is motivated by the discovery that an appropriate quotient SN 3 of the strongly normalising untyped 3-terms (where 3 is just a formal constant) forms a partial applicative structure with the inherent application operation. The quotient structure satises all but one of the axioms of a partial combinatory algebra (pca). We call such partial applicative structures conditionally partial ...
متن کاملProving Properties of Typed lambda-Terms Using Realizability, Covers, and Sheaves
The main purpose of this paper is to take apart the reducibility method in order to understand how its pieces fit together, and in particular, to recast the conditions on candidates of reducibility as sheaf conditions. there has been a feeling among experts on this subject that it should be possible to present the reducibility method using more semantic means, and that a deeper understanding wo...
متن کاملKripke Semantics for Dependent Type Theory and Realizability Interpretations
Constructive reasoning has played an increasingly important role in the development of provably correct software. Both typed and type-free frameworks stemming from ideas of Heyting, Kleene, and Curry have been developed for extracting computations from constructive specifications. These include Realizability, and Theories based on the Curry-Howard isomorphism. Realizability – in its various typ...
متن کاملCombinatorial realizability models of type theory
We introduce a new model construction for Martin-Löf intensional type theory, which is sound and complete for the 1-truncated version of the theory. The model formally combines, by gluing along the functor from the category of contexts to the category of groupoids, the syntactic model with a notion of realizability. As our main application, we use the model to analyse the syntactic groupoid ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 23 شماره
صفحات -
تاریخ انتشار 1999